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The aim of ihe present paper 15 the extension of the method of boundary integral equations
(B.I.LE) to dynamic unilateral contact problems. Using semidiscretization, with respect to time,
and then the inequality constrained principle of minimum potlential and the equivalent variational
incquality formulation, we derive saddle point formulations for the problems using appropriate
Langrangian lunctions. An elimination technigue gives rise to a minimum “principle” on the
boundary with respect to the unknown normal displacements of the contact region, which has
as parameters the velocities ete. of the previous time steps. It is also shown that the minimum
problem is equivalent to a multivalued houndary integral equations problem involving symmetric
operators. The theory is illustrated by numerical examples, which also treat the case of impact
of the structure with its support. In order to achieve this last task, an appropriate time
discretization scheme has been chosen, Mumerical examples dealing with the seismic behaviour
of two-dimensional structures suppaorted hy the ground are presented to illustrate the method.

Key Words:  houndary elements, dynamics, impact, soil-structure interaction, time domain,
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I. INTRODUCTION

In recent years a large number ol problems mvolving
unilateral constraints have been studied' % For static
problems, variational or hemivariational inequalities
cxpressing the principle ol virtual or complementary
virtual work in its inequality form are employed. These
varnational inequalities give rise to global or local
minimum problems for the potential or the complementary
energy, which alter discretization permit a numerical
trestment by using nonlinear algorithms.

For dynamic problems the corresponding variational
or heminariational inequalities do not lead to minimum
problems, but after a time discretization. Thus, we have
Loy solve an appropriate minimum problem within each
lime slep.

Important among the unilateral or inequality problems,
are the unilateral contact problems which arise when a
deformable body is in ‘ambiguous” contact with a rigid
or i deformable support or with another body. The term
“ambiguous” means that we do not know a priori which
parts of the body are in contact with the support or the
other body: this fact renders the problem unilateral. Our
attention is focused 1o the case of a rigid support since
all ather types of unilateral contact problem can be
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reduced to this first case. This is the famous problem
posed by Signorini in 1933 and studied in the static case
by Fichera®, Here we deal with the dynamic problem.
For the numerical treatment of this problem we have (o
solve, within each time step, an inequality constrained
quadratic programming (Q.P.) problem with respect to
the displacements {minimum of potential energy) or with
respect to the stresses (minimum of complementary
energy). Several works have been published which present
techniques lor the static or the dynamic problem, solving
directly or indirectly, the arising minimization prob-
lem?® 12 However, in all these techniques the size of
the structure to be analysed must be small, since the
stiffness of the whole structure is considered, or major
changes in existing general finite element programs are
required. Even the active constraint strategy™'" has the
same disadvantage due to the low degree of automatisation
concerning the determination of the active constraints.
In order to diminish the number of unknowns several
elimmation techniques of the internal degrees of
[reedom have already applied to static unilateral contact
problems'* 1% The most delicate elimination technique
has been proposed in Panagiotopoulos er al.'” ™' and
is based on Lagrangian formulations which lead, for the
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static problem, to an inequality constrained minimization
problem on the contact zone only, thereby drastically
diminishing the number of unknowns. However, alier the
discretization, full matrices are oblained instead of
banded ones. The derived minimum problems on the
boundary are equivalent to multivalued  boundary
integral equations (B.1LEs).

In order to treat the corresponding dynamic problem,
first a discretization with respect to time is performed
and then, within each time step, an inequality constrained
minimum problem on the boundary is formulated, alter
the elimination ol the internal degrees of freedom. Note
that the resulting time-difference Q.P. problem on the
boundary is equivalent 1o time-difference multivalued
B.LLEs. From this standpoint the proposed method for
the treatment of the dynamic unilateral contact problem,
can be seen as a first attempt lowards the formulation of
a B.1.Es. method for dynamic unilateral contact problems.

2. FORMULATION OF THE PROBLEM AS A
SADDLE POINT PROBLEM, WITHIN EACH
TIME STEP

We consider a three-dimensional linear elastic body. The
method we present here is general and holds also for
plates, beams, ete, ie., for all structures for which a
Lagrangian formulation of the equilibrium problem is
pussible,

Let € be a subset of the three-dimensional Euclidean
space F* with a boundary I'. £ is occupied by a linear
elastic body in its underformed state and is referred to
an orthogonal Cartesian coordinate system Ox, x;x;. I
is decomposed into three mutually disjointed parts 'y,
Iy and I's. On [ (respectively g) the displacements
(respectively the tractions) are given and on [y the
Signorini-Fichera boundary conditions hold. We denote
also by o = {1, the outward unit normal vector 1o I” by
§={5;} = {g;;;}, the traction vector on the boundary,
where a={o,;} is the stress tensor. Further, let §y
(respectively S.-) be the normal {respectively the tangential)
component of § with respect to I and let also Uy and
U} be the corresponding compon:..ni:. ol the displacement
vector U. We denote by &= {g;] the sirain tensor
{ussumption of small strains) and I;y C={Ciynt lLih
k=1, 2, 3). Hooke's tensor of clasticily which has the
symmetry properly

C ifhk = Cmn. = Ctm; (1)
and the ellipticity property

Ciin B By Z 078" By 12)
¥e={g,}eR?, cconst =0
We have on I
w,= U, U= U[x, 1) given (3)
and on Iy .
§,=F, F,=Fx, 1) given. (4)

The Signorini-Fichera boundary condition states that if
iy <0, then Sy=0 (no contact), while il uy =10 then
Sy =0 (no contact), while il uy = 0 then 5y = O (contact),
or equivalently

SyE0, uy =0, uySy=00n Iy (5)

Relations (5) is now completed with the condition in the
tangential direction

51=Cy Cry=Cplx, yon Iy ()

where € is a given tangential force distribution. It is
interesting to note that the case of more realistic unilateral
contact laws, e.g. with a lincarly deformable support, can
be reduced to the law (3) by enlarging the body €0 by
fictitious lincar-clastic springs along I, having appropriate
spring constants.

The equations of motion read

a4+ 0 = pitg+ cit in 2 x40, T) ]
cy=gfup=Hu, ;) in Qx (0, T) B)
0, = Ciine"bux i 2 (0, T) (9)
W= lx) al =0 Y
W=t (x)atr=0 (0]

where u,, (respectively u,,) denotes the initial displacements
irespectively velocities), (0, T) is the time interval in which
the maotion of the body is observed, = || represents
the volume force vector, a comma denotes spatial
differentiation, @, is the acceleration vector and p s the
mass densily. Let us assume that the damping term s
proportional to the velocity i; und let us denote the
damping coefficient by ¢ = (.

For the time discretization of the prablem, the method
ol mestep linear dilference operators is applicd. AL time
instant ' we assume thal

E al iyt = 5 E piggte (11a)

r=0

and

i Py = (6 i Bt o p =g, p=1 (11b)
=0 ¥ o
The coefficients o', 6, 4, and p depend on the
finite-difference wheme chosen, We assume that the step
gize dt remains constant, Moreover, in order to have an
implicit integration scheme we take b 1o be nonzero.
We obtain the relations

d i — Srh N = — Ua + SriUb ille)
and
S BIGR = ploly P — Ly U
=y*hi? + 0, (11d)

where
a=[a" ..., a7, b=[b", ., b9]",
p=[" L 19T and U= [0, L, WP
Accordingly we may write within the p-time interval
(1P B, after applying the above time discretizution
to the equations of motion, that (we omit the index p)
gy M= —Au, A=0in Q=11+ 81
where
Ji=fi—u
and where we consider from now on only the behaviour

of the structure in the time interval {1, ¢+ &),
Let ¥ be the set
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V={vle={yl,nu=Ui=1,23on T} {12)

Then, the kinematically admissible set for the displacements
within the time interval (1, £ + 61) is

K=Iolv={p) eV oy<shonl,} (13)

We denote by (T, 1) the work of the foree 7= {J} for the
displacement v = {v;} on Qx (r, 1 + &) and by [T, v]r the
corresponding work on T =T (ie. _Fuj',r:rd,}l elc. Further,
let

(. )= A I u U d A=>0 {14a)
i

and

alur, ) = (Celu), ev)) =J‘ Coe Eijlu) - £, (0)d1:  (14b)

a

he the hilinear form of elasticity and let TT be the potential
energy within the interval (1, t + 1), ie,

e} =dale, 1) + Yo, 0) = (. 0) = [Cr, velr, - [F. v,
(15)
We know that®
Miu)= {Nir)|ve K} in {t, t + dt) (16)

characterizes the position of equilibrium in each time
interval. Problem (14) has one and only one solution {for
€ H'(Q)) — the Sobolev-space- Cyppe L7T,, Cpin Fi12,
U,e H'?) which satisfies eqm'va[r;ntly the variational
inequality

veK,alu,o—u)+n,e—u)—No—u) =0 ¥Yoe K (17)

with vy = ([, v) + [F, vy, + [Cy, vy ]y, Relations (16) or
(17) are the primal formulations of the boundary value
problem within the time interval dt.

For the mixed formulation let us introduce the convex
subset (which is closed in the previously mentioned
functional framework)

L={pylpy<0on T} (18)
We perform the translation
B=u—ty, i=v—1u, (19}

where i, is a kinematically admissible displacement field,
i.e, such that w,, = U, on I', and

i, feV,=vlo={n}, ;e o,=00n T (20)
Then (17) takes the form: Find v =i + u, e K such that
alit, F— @)+ i, & — i) — I — i)
+ aut,, F—if) +(n,, t—u) =0 (21)
Yr=rf+u,ekK

and {16) becomes

M@ = min(TiF fe K, (22)
where
M) = YalF, 7 + 3@, ) — D) + alu,. 7 =T1) — )
(23)
and
R ={F|fy+ugys0Don ) i24)

MNote that n, may represent any other initial strain field
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(temperature distributions, given dislocations etc) We
denote by T the functional

) = NE) — alutg, ©) = (1, ) 2%

Here gy is the Lagrange multiplier for the problem.
Through this Lagrange multiplier we introduce the
boundary condition (5} on I',.

We have that

inf [N} = inf (T1{5) + 1g(E)
Iy v

where
_J0in £ 4wy on T,
Tkm = {"J_‘, otherwise (26)
But
Tel(i) = sup [ =y, By +tgydr] an

-l ]

and therefore

inf 11 (8)= inf sup {115)— [puw, By + vondr)  (28)
R ek, pyel

Thus the Lagrangian of the problem is a real-valued

Tunction % on F, x L defined within the time interval {1,

t + at) by the relation

(B, py) = Ya(B, §) + UE, ) — [pty, O+ "UN]I’.

~Cn e tF, a1, - ()
+ alu,, 1)+ (u,, 0. (2%

Thus, the mixed variational formulation of the semi-
discretized Signorini-Fichera problem now reads: Find
the saddle point

w, lyek,x Lol %onk, xL,ie
LW, ) < LW, L) € F (5, A VBV,
pp e L in (L, 1+ 81) (30)

In the previously mentioned functional framework we
can prove by the methods given in Ekeland and Temam?*®
(cl. also Refs 21, 22) that problem (30) admits a unique
solution | W, 1,},e ¥, x L within the time interval (1, 1,
+ d1) such that W=1ie K and i, =Sy on T,.

3 FORMULATION WITHIN EACH TIME STEP
WITH RESPECT TO THE DISPLACEMENTS OF
THE CONTACT AREA

Let us consider again the saddle point formulation (30)
which is now written in the form: Find {W, 2,}eV, x L
such as to satisly the problem
Fw, Ly) = inl sup L0, py) =sup inl L5, py)
v L L ¥

init, t +dt) (31)
We set

inf 2(5. gy = 11,(y) (32)
¥,
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assuming for the moment that pye L is given. Then (32)
is equivalent to the following bilateral problem: Find
i = il pyhe ¥, such that

alii, 0+ (i, ) — [y, Bur, — F 0) = [F, &y,
—[Cq, gdr, + alu,, 0 + (0, Bl =0 ¥eel,. (33)

Relation (33) is the expression of the principle of virtual
work for a fictive structure resulting from the initial
unilateral one, by eliminating the unilateral constraints
on [, and by adding the corresponding reactions py. The
position of equilibrium of this structure is characterized
within the interval (t, t + dt) by the minimization problem
(32) for the potential energy of this fictive structure. The
solution @i of (33} can be considered, due to the linearity
of(33), as the sum of i, € ¥, and i, & ¥, which are solutions
of the two following bilateral problems:

aliy, 8+ (i, ) — (T, 8~ [F, B,
—[Cy, Oy, + aluy, B) + (u,, B) = Oviel, (34)
El[ﬁzg E"+(ﬁj. TJT_'_ [_!lI-‘, E.V]r,quﬁEVu {35‘)

respectively. Obviously, bath problems describe the
cquilibrium configuration within each time step of two
bilateral structures resulting from the initial one, by
considering at each point springs with constants 4 =0,
by ignoring the unilateral support, and by assuming that
the appropriate boundary parts have zero loading,

In the case of {34), the structure is loaded by the [orces
fin Q2 and Cp on [, tangentially and F on T'p, whereas
on I', the normal loading is zero. Moreover, the initial
displacement field w, is taken into account. In the case
of (35), the structure is subjected to normal forces py on
[, and we assume zero forces in @, on [y, and in the
tangential direction on I',. Accordingly, the solutions i,
and ii; are uniquely determined, as it is well known [rom
the classical (bilateral) elasticity®®. For the arising two
bilateral structures we can write the solution in terms of
Green's operator G. This operator is the “same” for the
(wo structures duc to the ‘same’ type of boundary
conditions holding in both cases (see Fig. 1). Thus, we
may write in both cases the solution of the problem as
lollows:

i, = G, &; = Gly), G =iy +ii, 2= {f, F. Cy, u,}
in (¢, ¢+ td). (36)

Mote that the as yet, unknown force distribution
must be admissible in the sence of (18), ie. v e L. Thus
from (32), (34} and (35) we obtain by setting © = @, in
(34) and ¢ =4, in (35) that

11, (jy) = L, o) = Yaatii, @) — [y, Gy +ugy]r,
= [Cy, figly, — (T, @) = [F, @], + dlu,, i) =
— [ptys tiw Ir, — Lo, ﬁﬂl]r, = J;{I i)
—A4LF, ayJr, — 3 Cr. 63, ]r, — [itws won]r,
+ ddlu,, @) =
= Ly LGINAdr, — 3Laws [Gad]n ]y,
+ Lalu,, GO — 47 GO = 3LF, G,

= ;[C;-. Gm]r, — Litws “on]r, (37
where
dfu, v)= alu, v)+(u, v) (38)

Ug=0

Fig. 1.
each lime step

The problem decompasition { force method) within

Further, we denote by B the bilinear form

Blen, vy) = Lty [GloxllN]r, (39)
and by ¥ the linear form

Wpw)= —[aws [Gl]l'd]l" — [fs wonlr, (40)
Thus,

() = — 3By i) + Fpy) — HO GOD) — ALF, Gy,

— [ Cy, GDTr, + alu,, G+ Hu,, G)
(41

From equations (31), (32) and (41) we can obiain the
following minimization problem with respect to the
unknown boundary tractions py:

min{ 11 (sy) = 3y, pn) — Flin) |y € L (42)

The term — 3T, G(D) — [ F, Gy, — L Cr. Gy, + dalu,,
Gil)) does not depend on i, and therefore it can be
omitied. We denote obviously by 4y the solution of this
problem. Analogously to (17) we can show now that
Ay=8u) on T',, where iic K is the solution of the
problem (22). Moreover, in the functional framework
introduced previously for the data of the problem in the
interval (1, 1 + &), we can show that problem (42) has a
unique solution’®, Note that the symmetry of B(.,.) results
from Beuti's theorem!”.

It is worth noting that (42) is equivalent o the
variational inequality:

Find i, L such as to satisly

F{j-:-'s My — Anh = Fipty — Ax) 2 0 ¥y e L (43)

and to the ‘multivalued’ integral equation on the
boundary part I, of the structure which reads

v — 4 grad by, Ay)edl (i) {44)
where I,(4,) is the indicator of the admissible se L ie.
0 ifiy<0 (ie lyel)
A} = 5
) {:o otherwise (e Ay ¢ L) (43

Relation (43) is equivalent to (42) by some well-known
results of the theory of variational inequalities'?.
Relation (44) is equivalent Lo (43) by the definition of the
subdifferential as shown in Rel. 20,

From the mechanical meaning of (43) we obtain an
casy method for the calculation of corresponding discrete
form. We refer in this context to Rels 17 and 18, with the
additional remark that the work of the fictitious springs
with constant A must be taken into account.

Now we apply to(43) the duality theory for vanational
inequalities®® and we obtain the following minimum
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problem with respect to the unknown boundary normal
displacements py:

mind () = 48w, 0,) — Jiv,)/v, <0} (46)

where 3 and J are obtained from B and § respectively, by
applying the relations (3.6) and (3.7) of Refl, 24 which are
based on duality theory of convex functionals. Note that
4 is 7 symmelric bilinear form which is coercive in the
present problem. Also, the physical meaning of this
duality implies an easy method for the calculation of 3
and J as we shall sce in the next section. We notice here
two equivalent formulations of (46). The first is: Find
uye K el (13) such as to satisfy the variational
ineguality

ﬁlial\-. 0y — ) — Moy =) =0 Yo, e K (47)

The second is: Find wye K solution of the multivalued
B.ILE.

J—Lgrad By, uy)e ). {48)

4. NUMERICAL TREATMENT AND EXAMPLES

Out of the existing lime integration schemes only direct
integration methods can be used, due to the unilateral
constraints which make the problem non-linear. The
solution will be obtained using implicit and unconditionally
stable time integration algorithms. Explicit and condition-

20 19 18 17 16 13 14,1
T T T T T T T

21 T s 2 <ﬂ 1 cosea
E= 20.10° KN /m % i
23 v il 1" <1| '-\!.II'\I ataral
contact
= 0 20m g
23 3 10 <1| points
p= 024

74 8 c:“

25 | <11
26 a0my «:“ b
27 [ <]i
L : case b
8 5 ‘ql .Hunirulerur
B contact
29 4 <]_| i
points
i 3 <“

0 2l

a2 1
33 .3 35 36,37 3B 33040

.* —— g m— .*_

Fig. 2. The geometry and data of the examined problem

ally stable algorithms are not applicable, because the time
step for them is to be chosen on the basis of formulas
containing the [requencies of the system and these
formulas do not apply to the present problem, since no
frequencies can be defined in inequality problems in the
usual sense?.

For the numerical solution of the problem, the
weighted residual method proposed by Zienckiewicz,
Wood and Taylor?®, has been used. The method
interpolates independently the displacement and velocity
vectors and does not require computation ol acceleration
terms. This is a significant advantage for the present
problem, since the calculation of ‘initial’ accelerations
Just alter impact, would require additional computational
effort and also additional computer storage for also
storing the triangularised {consistent mass) matrix M.

Within cach time step the discrete forms of 3 and J
may be calculated in the following way: We consider first
a structure 2, obtained from the initial one by assuming
U=0onl,, Ty=00nT,and T,=0on I',. The stilfness
of this structure is appropriately modified by the [rictious
springs introduced by the time discretization scheme.
Then we analyse this structure by imposing a unit normal
displacement on the first node of T, and zero normal
displacements on the other nodes of T',. The solution of
this kinematically overconstrained structure £, gives the
corresponding normal reactions of all the m-nodes of T,
They constitute the first column of a matrix D. We repeat
this procedure for the second node ete. and thus we [orm
the whole symmetric matrix J. For each time step the
normal reactions of the nodes of T, for a structure )
having U, displacements on T',, T, =Cron I',, T =F;
on Ty, and loading J inside Qf, constitute a vector 2.
Then the solution ol the discrete Q.F. problem:

min{de"De— e |0 £ 0] (49)

where v=1{vy, ... Uyl gives the unknown normal
displacements on [, within the time step considered. Note
that if for the caleulation of Y and # the classical B.1.E.M.
is used then we obtain a nonsymmetric matrix £2%,

As a first example, the seismic behaviour of a two
dimensional structure supported by the ground is studied.
The geometry and data of the structure are indicated in
Fig. 2.

The ground is considered to be very stifl (e.g. rock) and
the motion can be applied directly to the soil-structure
interface, This motion is considered to be the horizontal
harmonic excitation shown in Fig, 3.

The boundary conditions are the following: the
soil-structure interface 33-40 (base), is firmly fixed, ie.
bilateral boundary conditions hold, while a part of the
interface |- 12 has unilateral contact conditions with the
ground.

1
U ——
oy {sec?)

03g

t({sec)

=039

Fig. 3. The ground accelerarion
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1 -6
-20 : e
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Uy (mi107*
oos @ o5 02 025
o 4 = ; 5 - =tisec)
5 {
0z, 02 tisec) 2 \X/ \’u\/
* &
Wv point 8
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& 005 W s 0.2 025 S
2.
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00s o 015 02 075
o = 2 tlsec)
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al point 4 '_?z YAl \]\j
4 ux (myao s _
[ L] point 2
1
005
0. t(sec)
-0
=01 Fig. 5. Oscillations | x-displacements) of certain poinis
s of the wail for 11 points of possible contact (5. Fig. 2)
-02
-025|

point 2

Fig. 4. Oscillations (x-displacements) of ceriain poinis
of the wall for 3 points of possible contact (5. Fig. 2)

The vibration of the wall is considered undamped in
the sense that C (cf equation (7)) is taken to be zero. When BT 1B 15141312
evaluating the dynamic response of the structure it is a )

necessary to consider the collisions with the ground, at a 8

the interface 1-12, as the wall wobbles back and forth. i v IEEFETE] =
The horizontal velocity of a point i belore contact is ;. £ » 20600 kN mE
When the point gets into contact with the ground a part "-gf:
of the kinetic energy is lost. It is reasonable to postulate i
a perfectly inelastic collision which dissipates the whole >
kinetic energy. Thus, the velocity of the point i just after _ i
impact (i;" ) is equal to zero. Accordingly, although C was Main hannel: o 2 140k rmd
taken equal to zero, an amount of damping is considered
due to perfectly plastic collision.

For the time discretization of the equations of motion,
the algorithm of Zienckiewicz, Wood and Taylor*® with i b et e b e L bt i i Al i 00
a ¢ = 0.5 is used. For the numerical solution of the strictly et e Souin 2392 o,
convex quadratic programming problem (49), a modifica-
tion of Hildreth D° Esopo’s iterative method is used'?.
Al each time step the convergence of the algorithm is
very rapid. When & node i contacts the ground, the Fig. 6.  The geomeiry and dute of the problem

+—30 —+

—
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u,leml

1sec)

—— Channel
-3 point1

== Soll

u,lem)

VR T S |

N 0
a
v

]

—— Channzl

-5 point 19
- = Gl

Fig. 7. Oscillations of certain channel-sail points for
wnifaieral confaci conditions

condition t," = 0 is imposed as ‘initial” condition for the
next time step, The computer code constructed is a
general one and can take into account any other type of
velocity changes due to impact (e.g. velocity reversal in
the case of elastic impact etc).

In Fig. 4 the response of the system with three unilateral
constraints is presented. Some of the examined points are
constrained and some other not. In Fig, 5 the system with
eleven unilateral constraints is presented. As it is expected
the response of the wall for the two different support
conditions is extremely different.

wlem)
Fl
3
2.
1
10

o w oy P
= | = |'J ¥y EX W) ‘|¢'
-

——— Channel point 1
-3

——— Chanmel point 7

Fig. & vy displacements of points 1 and 7

U fom]

e Chnned point 1lunitateral contoct)
——— Chanred point 1ibilateral conlact)

u, fcml

g

Hlzec)

= Channe| paint 3 uniloteral contact
— =~ Chemnei paint 12 bilnterosl contact

Fig. 9. Oscillation af peints 1 and 19 of the Channel for
wnilateral and hilateral soil-structure conditions

The computer code can effectively treat hundreds of
unilateral constraints; actually the same problem size
which treats the classical direct boundary integral
equation code. The present examples have been calculated
at a 386 PC and about 5 minutes are needed for 400 time
sleps.

As a second example we examine the problem of Fig.
6. It is a main channel buried in a linear elastic
homogeneous soil, supported by a rigid bedrock on which
a seismic excilation acts. A sinusoidal strong acceleration
is given at the bedrock. Unilateral contact conditions
with nonprevented sliding are taken into account between
the channel and the soil, In Fig. 7 the tume history of the
displacements ol certain points of the channel in relation
with the same points of the soil, are presented. In Fig. B
the displacements in the y-y direction of the two corners
of the channel are shown. Finally in Fig. 9 displacements
of the channel taken by a bilateral and also by a unilateral
contact channel-soil assumption are compared.
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