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In the present paper the method of boundary integral equations (BIE) is extended
to dynamic inequality problems involving convex energy superpotentials, i.e to
problems involving monotone, possibly multivalued, relations between reactions
and displacements, stress and strains, etc. Using semidiscretization with respect
to time the authors obtain, within each time step, a minimum potential
energy formulation, the equivalent variational inequality formulation and
some equivalent saddle point formulations using appropriate Lagrangian
functions, An elimination technique gives rise o minimum ‘principles’, on the
boundary with respect to the unknown displacements or stresses of the time
step under consideration; parameters are the velocities, etc., of the previous
time step. It is also shown that these minimum problems are equivalent to
multivalued boundary integral equation problems. The theory is illustrated by
numerical examples, which alse treat the case of impact of the structure with the

support.
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1 INTRODUCTION

In recent years several problems, for which the prin-
ciples of virtual and complementary virtual work of
power hold in inequality form, have been studied (see,
e.g. Refs 4, 7, B, 12, 13, 14). The inequality expressions
of these principles can be classified into two Lypes for
static problems: the variational and the hemivariational
inequalities, Then the derived inequality expressions
lead to global or local minimum problems for the poten-
tial, or for the complementary energy, which after dis-
cretization permit the numerical treatment by means
of nonlinear optimization algorithms.

For dynamic problems the corresponding variational
or hemivariational inequalities may be formulated as
minimum problems, only after an appropriate discreti-
zation. Thus, within each time step, results a minimum
problem.

Among the unilateral or inequality problems an
important class are the unilateral contact problems
which arise when a deformable body is in ‘ambiguous’
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contact with a rigid or a deformable support, or with
another body, with or without friction (see, e.g. Rels
1.3, 8, 10, 11, 16). The term ‘ambiguous’ means that
it is not known a priori which parts of the body are in
contact with the support or with the other body; more-
over it is not known a priori which parts of those bcing
in contact have an adhesive or a sliding friction.!
Another class of problems are those ol plastic hinges
in plates; here the extent of the plastic hinge along the
boundary is not known a priori, Tt has been shown,
see Ref. 14, that all inequality problems involving monao-
tone, possibly multivalued, stress-strain or reaction-
displacement relations, or equivalently convex ‘super-
potentials’, lead to wvariational inequalities. Thus we
have to solve within cach time step an inequality con-
strained convex programming problem with respect to
the displacements (minimum of the potential energy),
or with respect to the stresses {minimum of complemen-
tary energy).

However, until now the size of the structure con-
sidered should be small, due to the large number of
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unknowns. In order to diminish the number of
unknowns an elimination technigue of the internal
degrees of freedom has been proposed by Panagioto-
poulos'® for static variational inequalities. This tech-
nique is extended here to dynamic wvariational
inequalities: within each time step a parametric Lagran-
gian formulation of the initial variational inequality
leads to time parametric minimum problems on the
boundary, which are equivalent to multivalued bound-
ary integral eguations (BIEs) within each time step,
i.e, producing time-difference multivalued BIEs. Inclu-
sion of partial or total velocity reversal into this model
permits the rational consideration of impact shocks.
Numerical examples from aseismic design and from
dynamic plasticity illustrate the theory.

This paper does not deal with the corresponding
hemivariational inequality problems [(see Refs 12, 13
and 14}, where the lack of convexity and the resulting
nonuniqueness of the solution within each time step
have lefi, until now, many unsolved problems.

2 THE DYNAMIC VARIATIONAL INEQUALITY
AS A SADDLE POINT PROBLEM, WITHIN EACH
TIME STEP

The authors consider a three-dimensional linear elastic
body: the method presented is general and holds also
for plates, beams, etc., i.e. for all structures permitting
a Langrangian lormulation of the equilibrium problem.

Let {1 be a subset of the three-dimensional Fuclidean
space R* with a boundary I'. ¥ is occupied by a lincar
¢lastic body in its undeformed case which is referred
to an orthogonal cartesian coordinate system O xaxy.
I' is decomposed into three mutually disjoint parts T'y,
Iy and I's. On I'y; {with respect to I'x) the displace-
ments (with the respect to the tractions) are given, and
on I's boundary conditions giving rise to variational
ingqualities hold. Let us denote by m = {m;} the out-
ward unit normal vector to I' and by 8= {§}=
{o;;,»m;} the traction vector on the boundary, where
o ={oy} is the stress vector. Further let S, (with
respect to §y) be the normal (with respect to the tangen-
tial) component of § with respect to I'; let also uy and wy
be the corresponding components of the displacement u.
The authors denote the strain tensor by e = {¢;}
[assumption of small strains), and by C=
{Com i 0o A, k} = {1, 2, 3} Hooke's tensor of elasti-
city which has the symmetry property:

Cipme = Cpimx = Crnyy (1)
and the ellipticity property

ij“f,‘jfm; < CEjjEpL Ye= {E,‘j} = R31 cconst. =0

(2)

On Ty

= U, U;=Uix, 1) given (3)
and on T'p

S5 =F, F,=F(x, t) given. (4]

The boundary condition on I'y reads
—-S € df{u) on Tg. (5)

Here j is a convex lower semicontinuous superpotential
taking values in the interval (—oc, +oo], j# oo (com-
pare with e.g. Refs 14, 15). Note that egn (5) might be
replaced without affecting the method of the present
paper by the two conditions

—8y € dix(uy) and — Sy € dip(uy) (6)

The following equations of motion hold:

oy H i) = pily+ ey in 02 x (0, T) (7)
ey = eig(u) = 12wy +uy;) in2x(0, T) (8)
oy = Cymess i€ x (0, T) 9)
W =1wup(x) ati=0 ( 10z)
i =u(x) ati=10 {10b)

where w;p (with respect to u;,) denotes the initial dis-
placements (with respect to velocities), (0, T') is the time
interval in which the motion of the body is observed,
f={f:} represents the volume force vector, the comma
denotes the partial derivation, i is the acceleration vec-
tor and p is the mass density. Lel us assume that the
damping term is proportional to the velocity u; and
denote the damping coefficient by ¢ > 0. The method
of m-step linear difference operators is applied for the
time discretization of the problem with respect to time.
At time instant /" one obtains (sce Ref. 6)

q q
Za'f":'u[.ﬂ-’.:' =ﬁfzﬁﬂ}&f.ﬂ—r] {] la)
ra=ll r=l

and

& : 9
S = RS, 2 g, >

=0 r=l

{11b)

The coefficients o, 3, 4", and ;1 depend on the
finite-difference scheme chosen. The authors assume
that the time step size Ar remains constant. Moreover,
in order to have an implicit integration scheme 8% is

taken to be nonzero. Thus the relations
a®u'® — AtgHP = _Ua + AUB (11c)
(AN AR — A0 ) ey n(AN*UB

=49 L (11d)
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where
a=[, ... a9, g=[", ..., 9
=0 o ), and U= Y, L )

are obtained. Accordingly one may write within the p-
time interval (/) ¢'¥ + Ay) after applying the above
time discretization, to the equations of motion, that
(omitting index p)

ot A0 =g+ Ay A>0in Qx (1, 1+ A1)

Here A is a constant equal to ~™p/p(Ary?3%+
a[mc,f&r{:‘[m which is positive due to the time discretiza-
tion scheme. The term g; contains the terms of the pre-
vious time steps resulting from eqns (11c) and (11d).
Note that thermal terms, and terms duc to disloca-
tions, may be included in the model provided they are
known at time r. 5
The authors denote, by f;, the term
fi=fi—&

and consider from now on only the behaviour of the
structure in the time interval (r, r+ Ar). The above dis-
cretization process replaces the dynamic variational
inequality formulation of the problem by a static varia-
tional formulation. In the absence of shocks it can be
shown that as Ar— 0 the solution of the dynamic
problem is obtained (see Refs 4 and 14). However, in the
realistic case of shocks, treated in the present paper, the

mathematical problem of convergence is still open.
Let V be the set

V={vjv={y}l, s,=U,i=1, 2, 3on Ty} (12)

of the kinematically admissible set for the displacements
within the time interval (¢, ¢+ A¢). The authors denote
the work of the force /= {f}} by (f, v) for the displace-
ment v = {v} on {2 and by [f, s the corresponding
work on I C T, (i.e. [ fv; dfl, etc.). Further let

(w, v)=A J!! w, dil A=0 (13)
and

au, v) = (Ce(u), ev)) = L! Cipmaeijla)en(v) di2
(14)

be the bilinear form of elasticity and let II be the poten-
tial energy within the interval (¢, 4+ Af)

Oiw) = 1/2a{v, v) +1/2(v, v)

—(F; v) + ®(u) — [F, v, (15)
where &(v) = {|;. j(v) dT" if j(v] is integrable, oo other-
wisel.

From Ref. 14 it is known that
M(u) = {T(v)jv € ¥} in (t, 1+ Af) (16)

characterizes the position of equilibrium within each
time interval. Problem (16) has one, and only one,
solution (for v, € H'(2)-the Sobolev space)

Cijm € LT(82), JF: = Lz[:ﬂ:]r
F € LX), U; € H3(Ty)
which satisifies equivalently the variational inequality
ue Voolw, v—u)+(u, v—u)+d(v) — du)
=Hv=u)z0 YoeV (17)
with [{v) = (f,v) + [F,v]r,. Relations (16) and (17) are
the primal formulations of the BVP within the time

interval Ar. For the mixed formulation the authors
introduce the translation

T=u=uy {18)
where uy i1s a kinematically admissible displacement
field, i.e. such that uwy = U, on T'y and let

W= u— iy,

aielg={v={v}hveFu=0 on Iy}
(19)

where V" = [H'{ﬂ)]j. Then eqn (17) takes the form: find
u=t+uy € Vsuch that
o, 0 — @) + (4,0 — &) — Ko — a) + B0+ ug)
— B+ up) + afuiy, 5 — )

+ {1y, 5 — ) 20 (20}

Vo=t eV
and egn {16) becomes

Ii(&) = min{I1(7)|7 € ¥} (21)
where

T(#) = 1/2(%,8) + 1/2(8,v) = () + alug, ) + (ug, ©)

+ ®( + up) = II(&) — [(ap) (22

Note that wy may represent any other initial strain field
(temperature distributions, given dislocations, etc.]. The
functional [ is now denoted by

1(©) = (1) — alup, ¥) — (up, 7) (23)
Now let p = {u;} be the Lagrange multiplicr for the
problem. Through this Lagrange multiplier the authors
introduce the boundary condition (5) on I's.

Let also L be the admissible vector space for p (see
Ref. 15, page 150} and observe that

BB llg) = FBL S B i &°(—n) (24)
I

where @° denotes the conjugate function to @ (see Refs
14 and 15) which is also convex, lower semicontinuous
on I and takes values in (—oo,+0c], % # oc. Thus
one may write that
nf I1{#) = infsup {fl[ﬁj — [T + wglr, — B5(—p)}
ek Fe b pel

(25)
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Thus the Lagrangian of the problem is a real-valued
function £ on F; x L defined within the time interval
(1,¢ + At) by the relation

27, p) = 1/2a(6, 1) + 1/2(0,0) — [T+ ug|r,
— 8(—u) — [F, o), — (/)
+H(Hmf".\ll+ {uﬂsﬁ) (26)
and the mixed variational formulation of the semidis-
cretized variational inequality (17) now reads:; find the
saddle point
'['I-Tw‘, )ﬁ]‘ € Vu xL of 2 on Vﬂ 4 L_. i.e.
Sl p) < 8w, A < (o Ao e H,pe L
in (¢4 A5 (27)
In the previously mentioned functional framework it
can be shown, by the methods given in Ekeland &
Temam,® that problem (27) admits a unique solution

{w,A}, € ¥y x L within the time interval (r,f+ Af)
such that w =& € ¥, and A = 8(7) on T's.

3 DERIVATION OF A TIME-DIFFERENCE
MULTIVALUED BOUNDARY INTEGRAL
EQUATION

Let us consider again the saddle point formulation {27)
which is now written in the form: find {#,A} € Vy x L
such as to satisfy the problem

2w A) = infsup(v, u) = supinf 8{o, 1) in (¢, § + Af)
WL LK

{28)
The authors set
inf £(5, u) = I, () {29)

assuming for the present that p € L is given. Then eqn
{29) is cgquivalent to the following classical elasticity
problem: find & = fi(i) € ¥ such that

alit, @) + (i, #) — [, Tp, — (£ 9) — (F. %)y, + alug, )
+ (g, 0) =0 WB€ ¥yin (1,2+ A7) {30

Relation (30) is the expression of the principle of virtual
work for a fictive structure, resulting from the initial
unilateral one, by eliminating the constraints on ['g
and by adding the corresponding reactions p. The
position of equilibrium of this fictive structure is
characterized within the interval (1, r + Ar) by the mini-
muim problem (29) of the potential energy. Owing to the
linearity of eqn (30), its solution & can be considered as
the sum of @#; € ¥ and &, € I}, which are the solutions
of the two following bilateral problems:

afity, ) + (i, ©) — (£, ) = [F, Olr, + alup, 0)
+ (g, ) =0 Yo K (31)

and
ality, T} + (i, 7) = [0, T, =0 Vo e b (32)

respectively, Both problems describe the equilibrium
configuration within each time step of two classical
linear elastic bodies resulting from the initial one by con-
sidering, at each point, the body’s springs with con-
stants A > 0, by ignoring the I's support and assuming
that the appropriate boundary parts have zero load-
ing. In the case of eqn (31} the structure is loaded by
the forces /in {2 and F on I'y, whereas on I'y the loading
is zero. Moreover the initial displacement field wy is
taken into account. In the case of eqn (32) the structure
is subjected to boundary forces o= {4}, i=1, 2, 3 on
I'g and the authors assume zero forces in @ and on
'y Accordingly the solutions @, and > are uniguely
determined, as it is well known from the classical linear
elasticity (see Ref. 17). For the arising two classical
elasticity problems the solution can be written in terms
of Green's operator 7. This operator has the same form
for both structures, due to the same type of boundary
conditions holding in both cases (see Fig. 1). Thus in
both cases the solution of the problem can be written
in the form

i = G{!-:J!ﬁl = Glp), it = w) + i, 'iT= {fiF o},

in {41+ A {33)
Mote that the yet unknown force distribution
p={p;} € L must be determined. From egns (29),
(31) and (32), one obtains, by setting © =& In egn
{31) and v = &, in eqn (32)

() = 2(7, 4) = 1/2a(d, @) — [, @ + w]r,

— ®(—p) — (foit) — [Fillr, + aluy, @)
= —[u, '7131‘_, —1/2[u, I}111“, - Uzﬁf.ﬁd

— LA2[F i, — [wwolr, + 1/ 2a(ug, i)
- ®(—p)
=[1 [G (D] = 1/ 2, (G,
+ 1/2a(ug, G(1)) — 1/2(f, G(D)

- YUF G, — 2(—u) — [mwlr,  (34)

Fig. 1. The problem decomposition [force method) within each
step.
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where
@(u, v) = alu,v) + (u,v) (35)

Further, .5‘ is denoted by the bilinear form

Blp,v) = [, [GN]Ir, (36)

which is symmetric {due to Betti’s theorem) and by 7 the
linear form

() = i, [GDr, — L i, (37)
Thus
() = —1/28(p, ) + F{p) — 1/2(F. G(D)

— 1/2[F,G(D]r, + 1/2a{uy, G(I))

+ 1/2(ug, G(1)) (38)

From eqns (28), (29) and (38) one can obtain the
following minimization problem with respect to the
unknown boundary tractions p:

min{ITy () = 1/26(, p) + (1) ~ 3wl € L}
(39)

The term —1/2(f, G(N) — 1/2[F, G(N)], + 1/ 2a(uy, G(IY)
does not depend on p and therefore can be omitted. The
authors denote, obviously again, by A the solution of
this problem.

As Pﬂn&giompnulusls it can be shown that
A= 8yl#E) on Tg, where i € I is the solution of the
problem (21). Moreover in the functional framework
introduced previously in the interval {11+ As) one
can show that problem (39] has a unique solution. It
is worth noting that eqn (39) is equivalent (sce Refl. 3)
to the varational inequality: find A £ L such as to
satisfy

P (—p) — B°(—A) + A(A p— A} = F(p—A) = 0
Ypel (40)

Using the definition of the subdifferential, eqn (40) is
eqivalent to the ‘multivalued’ integral equation

v—1/2 grad B(A, A) € 88°(—A) on T (41)

which holds on Ty,

Applying to eqn (39) the duality theory of convex
variational problems (see Refs 5 and 14) a minimum
problem with respect to the unknown displacements u
and I'y 1s obtained: it reads in the time interval
(£, 1+ &)

min{Ila(v) = 1/28(w, v} + ®(v) = {{w)jw € Ko} (42)

where & and { are obtained from 3 and 7 respectively by
applying the duality transformation of convex analysis
{compared with cgn (24)). Note that & is a symmetric
coercive bilinear form, Notice here two eguivalent for-
mulations of eqn (42)., The first is: find we W
{compared with eqn (13)) such as to satisly within

(1,1 + Ar) the vanational inequality

() — O(u) + b(uv—uw) —Jv—u) 20 Vve I
(43)

The second 1s: find 1 € ¥ solution of the multivalued
BIE

J— 12 grad &{u.u) € OB(u) (44)

At this point it should be noted that the duality of
convex analysis is in the framework of elastomechanics
and is equivalent to the duality between the displace-
ment method and force method.

4 DISCRETIZATION AND NUMERICAL STUDY

As it has been pointed out, the solution of the dynamic
inequality problems considered in the paper, for each
time interval, is formulated after an appropriate time
discretization. For the numerical solution, the weighted
residual time discretization algorithm proposed by
Zienckiewicz, Wood and T:i},r!ﬂr,“J which is a special
case of the algorithm defined by eqns (11c) and (11d),
has been applied. The algorithm is implicit and uncon-
ditionally stable. Note that explicit and conditionally
stable algorithms are not applicable because the time
step for them is to be chosen on the basis of formulas
containing the frequencics of the system, and these for-
mulas do not apply to the present problem; indeed no
frequencies can be defined in an inequality problem in
the classical sense, as in Rel. 14,

The algorithm independently interpolates the dis-
placement and velocity vectors, and therefore com-
putation of acceleration lerms is avoided. This is a
significant advantage for the present problem, because
of calculation of ‘initial’ accelerations in the case of
impact is avoided.

As the authors have shown in the previous section
two minimum problems hold, for each time interval, on
the boundary I's of the system which is subjected to
inequality boundary conditions. The two minimum pro-
blems are dual in the sense that the first eqn (39), has, as
unknowns, the boundary forees on I'g, whereas the sec-
ond eqn (42) has, as unknowns, the boundary displace-
ments on I'g. In the case of discretized structures, the
corresponding discrete analogue of eqns (39) and (42)
can be obtained. In this context the authors refer to
Ref. 15, with the additional remark that the work of
the fictitious springs with constant 4 must be also con-
sidered,

The first minimum problem, eqn (39), as well as the
expressions of eqns (31), (32), (36), (37) are con-
sidered. From these expressions, which conlain energy
and mechanical terms, one may obtain an easy method
to formulate the discretized minimum problems at the
boundary which correspond to eqns (39) and (42). To
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calculate the discrete form of II; the authors first dis-
cretize the elastic bodies under consideration by any
discretization method, (eg. FEM or BEM). For this dis-
cretized system, the unilateral (inequality) constraints
on the boundaries I'g refer to the m discrete node pairs
of these boundaries. The authors then consider the sys-
tem [y obtained from the discretized one by assuming
only the kinematical constraints on I'y;. The resulting
structural system is also appropriately modified by the
fictitious springs introduced by the time discretization
scheme. This discrete system is ‘solved’ for a pair of
unit forces of opposite sign corresponding (o an
‘inequality’ constrained degree of freedom, on the first
node pair of I'y, and zero forces on the other node pairs
of I's. The solution of the resulting underconstrained
structure {1, supplies the corresponding displacements
in the directions of the “inequality’ constrained degrees
of freedom of the m node pairs of T's. They consistute
the first column of a matrix B. This procedure is
repeated for all the node pairs m and thus the whole
symmetric positive definite matrix B of the influence
coefficient is calculated. MNote at this point, that if
the unit force solutions were analytically given then eqn
(41} would be the explicit form of a multivalued integral
equation on the boundary.

Within each time interval the displacements in the
directions of the ‘inequality’ degrees of freedom of the
node pairs of I's due to the external actions constitute
a vector g. Then the discrete form of the minimum
problem (39) is written as:

min{d "By + 8 (—pr) — @7 plp € L} (45)

Here g is the vector of the unknown reactions of I's,
which must fulfill the inequality subsidiary conditions
of the problem.

The dual discrete minimum problem of egn (45],
which is also the discrete form of eqn (42) can be writ-
ten as:

min{IviDv 4 &(v) — " -v|v & 1}} (46)

where v is the vector of the unknown displacements on
s, which must fulfill the inequality subsidiary con-
ditions of the problem. By applying the duality rela-
tions, between eqns (43) and (46) the matrix D and
the known vector Z are obtained using the clastomech-
anical duality D and # may be obtained also as follows.
The discrete structural system £2 is solved by imposing a
unit displacement corresponding to an “inequality’ con-
strained degree of freedom, on the first node of T'y by
zeroing the displacements of the other degrees of free-
dom of the same node and of the degrees of freedom
of all the other nodes on I'g. The solution of the result-
ing overconstrained structure €1, supplies the corre-
sponding reactions of all the fictitious constraints of
the m-nodes of T's. They constitute the first column of
a matrix D. This procedure is repeated for all the node

¥ : : A -
=
|
LN —
1 I
T
: ; il TR B = 40000 Kot
1 : E framg =21 10° KHm*
i I a0 | A i T T
T ; £=h KN
'j_l i £ B0
! s 3'g 7 ol r it ge g3 e gr i g
TTITTTTTITTIIITIIIIY

l A Lm |
| [
Fig. 2. Analytical model of six-storey frame.

pairs of 'y and thus one obtains the whole symmetric
positive definite matrix D of influence coefficients.
Within each time interval the reactions of the nodes of
all the fictitious constraints of the m nodes of I'y due
to the external actions constitute the vector z.

Both the discrete minimum problems (45) and (46)
are classical quadratic programming problems, sym-
metric and positive definite, even in the case of elastic
bodies [see first example) which do not have any fixed
boundary I'y; (m; = 0) which prohibit the body’s mgd
body's motion. This is due to the fact that B and D
are effective matrices which are calculated from the stiff-
ness matrix of the structure for which fictitious springs
have been introduced by the time discretization
scheme, B and D are full matrices but of small size (only
the unknowns on I'g are considered).

In the following, two dynamic inequality problems of
different nature are numerically studied. In both exam-
ples the displacement method is used for the solution.
At each time interval (¢, ¢+ Ar) a modification of Hil-
dreth d’Esopo’s algorithm is used by which is obtained
the final condition of every pair of nodes on the I'y
boundaries, through an iterative process. This algo-
rithm is applied for the solution of the quadratic pro-
gramming problem (46) which has as unknowns only
the displacements at the 'y boundaries and which
converges to the unique solution due to the positive
definiteness of matrix D,

As a first example the authors examine the two-
dimensional building frame of Fig. 2. The structure is
founded on elastic soil through a continuous founda-
tion beam. Unilateral contact conditions hold at the
base of the footing since the tensile strength of the soil
is negligible. The superstructure is assumed to behave
linearly. The masses of the structure are assumed con-
centrated on the frame girders (6 KN/m) and lumped
at the nodal points.

The two dimensional system is subjected to a dynamic
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Fig. 3. Strong motion portion of Thessaloniki's 1978
accelerogram.

loading 1n conjunction with the static loads due to its
dead weight. The strong motion of Thessaloniki’s 1978
earthquake accelerogram has been selected for the
dynamic excitation of the structure (Fig. 3).

The soil is discretized by indpendent linear elastic
springs. The unilateral contact law and the loading-
unloading path, which is holonomie (path independent)
for this problem, are given in Fig. 4. The normal dis-
placements uy at 21 discrete points of the foundation
beam are the unknowns of the minimization problem
which is solved at each time interval,

The QP problem (46) which holds for each time
interval is written as:

min{liayDiy — 3 ciyjuy =y - <0} (47)

where a is a function of already known values of the
previous step.

The solution of eqn (47} by the modified Hildreth
d'Esopo’s algorithm gives the final condition [contact

Uy

Fig. 4. Unilateral S, — uy, law for the spring (soil] elements.
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Fig. 5. Oscillations (uy-displacements) of point 3 of the

foundation beam for wunilateral and bilateral contact
conditions.

or separation) of every node of the foundation beam.
Thus, when at a time interval (¢,¢+ A¢) a point { of
the beam comes into contact with the ground (spring)
the algorithm makes the displacements compatible that
is uy = dy (where d; is equal to the gap between the
beam node and the spring at the end of the previous
time interval (f — Ar,r)). However, the velocities and
accelerations must also be changed due to impact con-
ditions, (Ref. 10). These impact conditions are imposed
at this instant at point i, Let &; be the vertical velocity of
a point { before contact. When the point gets into con-
tact with the ground a part of the kinetic energy is
lost. For the examined problem it is reasonable to pos-
tulate that all the energy is lost (a perfectly inelastic
collision takes place which dissipates the whole kinetic
energy). Thus the wvelocity of the point ¢ just after
impact (') is equal to zero ((4) = 0). With the cal-
culated values of wy and the imposed values of ay, the
algorithm proceeds to the next time interval,

The vertical displacements &y of points 3 and 19 of
the continuous footing for unilateral and bilateral con-
tact conditions are presented in Figs 5, 6, 7. Also the
normal reaction values for the same points are pre-
sented in Figs 8, 9, 10. It is seen in these figures that,
for some time, the points of both ends of the con-
tinuous beam are in contact. When for some time one
end loses contact, generally the other is in contact. Also
the reactions and displacements are greatly affected
from the bilateral or unilateral assumption of the
response of the points of the footing.

As a second example the authors examine a rectan-
gular thin plate in bending with clamped rigid-plastic
edges (Fig. 11). The displacements v of any point in
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Fig. 6. Oscillations (uy-displacements] of point 19 of the

foundation beam for unilateral and bilateral contact
conditions.

the direction of the coordinate axes are expressed
through the transverse displacements wix,y), which
are laken as positive upwards.

yli=1,2,3) = {_;% = zf,, _2?3_: = zfl,, w}

The plate as shown in Fig. 11 is discretized by four-
node rectangular elements. The vector of nodal displace-
ments at any node i is w; = {wy, dw;fdy, —w;/dx} =
{w;, 8. 0;,} and the nodal actions corresponding to
them are p; = { p;, M, M3, }.
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Fig. 7. Displacements of point 3 wversus point 19 of the
feundation beam for unilateral contact conditions,
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Timeizec)
Fig. 8. Reactions at point 3 of the foundation beam for
unilateral and bilateral contact conditions.

The response of the plate, under a transverse uniform
dynamic load, which varies in time as shown in Fig. 12,
is obtained. Plastic hinges may be formed along the
boundaries during the loading process. In Fig. 13 is
shown the rigid-plastic law which gives the relationship
between the edge moments My and the inelastic rota-
tions fy, at the discrete points of the boundaries, and
the loading and unloading paths, which are nonholo-
nomic (path dependent).

My and My are positive values expressing the positive
and negative yield moments. For each time interval
(t,0+ Af) relations between rotations increments
(Afp) and the bending moments (M) at a point i of
the boundary (nonholonomic conditions) must be

100
— Unitateral-19

TN
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Reactioni (KM)
=

iy
) |

-150

200 T T T T
5 8.0 85 8.4 9.5 10,0

Fig. 9. Reactions at point 19 of the foundation beam and
bilateral contact conditions,
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Fig. 10, Reactions of point 3 versus point 19 of the foundation
beam for unilateral contact conditions.

written. These relations have the form,”

¢ =M - M <0, ¢ =-M;— My <0  (48)
AN 20, AN =0 (49)
Ab, = AN — AN (50)
o AN =0, ¢ AN =0 (51)

where the variables ¢ can be interpreted as yield
functions. The above relations written in matrix form
are:

@=L M, =M, where M= {M}y, M}

(52)
Axy =0, where AX = {AA AN} (53)
Y
_ E=21 *10* K *
1 vl
bell.3n
=05 KM ?
z
Em A =
B
X
i
u1
b = x
L am
| i
Fig. 11. The geometry and data of a rectangular plate in
bending,

AAAN
VY

B (KNm®
=

-20 T T T T
[111] 0z o4 11 0E 10
time (sec]
plt
Bm
Fig. 12. The dynamic load.
q"l’ " AJ' =0 {54:]
A, =L;- AN, where L;=[l.—1] (55)

At first the authors define, as follows, the matrix D of
the convex programming (46). Since the inequality con-
strained displacements of I's are the rotations #y, unit
effective rotations #y — 1, through the technique of
Lagrange multipliers, are imposed at the nodes of T'g,
using the appropriate effective stiffness matrix, (see
Ref. 10). At each time interval (1, + A7) the effective
force vector Z (bending moments at the boundary
points) is obtained as previously described.

For the total number of constrained boundary nodes,

My

—— . — =

Fig. 13. The rigid-plastic moment-rotation relationship for the
boundary of the plate.
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Fig. 14. Oscillations (w-displacements) at the middle point of
the plate for three different boundary conditions.

one can write the matrix expressions (52} + (55) as:

<0 AXZ0 d-AX=0 (56a,b,c)
where
&= [dr.d2 ... ¢l
AX={AN, Ad, ., AN
Af = {Afy, A8y, ..., AR =L.AX

where L is a block-diagonal supermatrix havin§ L; as

the main diagonal entries and zero elsewhere.” Thus
the relations (46) take the form:
min{} AXT(LT-D-L)AX) — (M + )"
% AA|AX - a < 0} (57)

where o is a function of alrcady known values of the
previous step and My, 2, are the functions of M, and
7, (see Mitsopoulou').

B BOARGTY (CEMpR
=  Elnupiasiic bousdary 15 KN miS KN m) n
o wmmmﬂﬂwlﬁﬂm

La sl

va wfp U ’lv‘:

Hime |sec)
Fig. 15. Bending moments at the middle of the boundary for
three boundary conditions.
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Fig. 16. Rotations at the middle of the boundary for three
different boundary conditions.

For the numerical solution of this strictly convex
quadratic programming problem, a medification of
Hildreth d’Esopo’s iterative method is used, At each
time interval the algorithm's convergence is very rapid.
In Fig. 14 the displacements w of the central node of
the plate are shown for three different boundary con-
In the first case MJ = My — oo, in the
second M7 =M =16KN-m in the third case
My =5KN-m, My =15KN-m.

In Fig. 15 the bending moments of the middle point of
the boundary are shown. [n Fig. 16 the rotations of this
point are shown (87 = 0 for My = My — o). Finally
in Fig. 17 the rotations and the bending moments of
the midpoint are shown. As 1l was expected the rota-
tions are changed when the moments take the constant
values M] or M are conversely when the moments

0

B
= 5+ h
‘% 2 L J—i \1 JJ ‘H‘(Jf-
= [ ¥
2 o4\ ;
f -0

.15 4

S
o I S n; o -

time (3ec)

Fig. 17. Bending moments versus rotations at the middle of the
boundary for My = My = 15KN-m.




A boundary integral equation approach to elastodynamic inequality problems and applications

are changed, (i.e. they take values between M and M)
the rotations remain constant,
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