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ABSTRACT

In the paper a method is presented for the numerical solution of the dynamic
unilateral contact-impact problem between elastic bodies. Spatial finite
element discretization, and also temporal discretization are used. For each
time step an elimination technique of the internal degrees of freedom gives
rise to a minimum quadratic programming (q.p.) problem on the boundary
with respect to the unknown unilateral displacements of the time step under
consideration. This problem is solved by a relaxation algorithm considering
also the impact shocks and the velocities’ changes due to them. At the end
of the paper numerical examples are presented.

INTRODUCTION

Among the unilateral or inequality problems an important class are the
static unilateral contact problems which arise when a deformable body is
in “ambiguous” contact with a rigid or a deformable support or with an-
other body with or without friction (Panagiotopoulos', Kalker®, Bisbos?,
Doudoumis?). The term “ambiguous” means that we do not know a priory
which parts of the bodies are in contact, since tensile stresses cannot be
transmitted between the bodies and thus the bodies may separate form one
another at some parts of the boundaries.

At the same time another class of problems of considerable importance
in science and technology, are the unilateral problems involving dynamic
contact - impact effects (Hughes et al®, Mitsopoulou®, Ayari’, Mitsopoulou
et al®).

In the present paper a method is presented for the numerical treatment
of the dynamic unilateral contact impact problem between elastic bodies.
Static loads are carried by the structures before the dynamic loading begins.
Spatial and temporal discretizations are used and a nonlinear quadratic
programming problem is solved at each time step for only a small number
of unknowns which are the “unilateral” boundary displacements. Thus the
proposed method can be used for the study of the seismic response of large
structures supported on soil which is capable of supporting compressive
stresses but no tensile stresses (unilateral contact).




FORMULATION OF A DISCRETE MATHEMATICAL MODEL

In order to formulate the discrete mathematical model of the problem men-
tioned above we assume the following:

a) The displacements and the strains are infinitesimal.

b)  The elastic bodies are discretized by proper finite element mesh with n
discrete nodes. Thus the configuration of the system is described in the
general case, with reference to a global Cartesian coordinate system
Oz z923, by the 6n-vector u of generalized nodal displacements (three
deflections and three rotations per node).

¢) The contact between the bodies is frictionless and is localized at the m
nodes of the boundaries I',, for which the unilateral contact conditions
hold. The compressive reactions 7}, that occur at the contact points
are normal (N) to the contact surface (r% correspond to the unilateral
relative displacements u}).

On the basis of the above assumptions and discretization, the dynamic
equations of equilibrium of the element assemblage at any time is written
as:

Mii+ Cu + Ku = F(t) + 7(t) (1)

In (1) K is the 6n x 6n stiffness matrix, M is the 6n x 6n positive definite

mass matrix and C is the 6n x 6n damping matrix. F'(t) is the 6n vector of

the excitation nidal forces, r(t) the 6n vector of the reactions, u is the 6n

vector of the nodal velocities and @ the 6n vector of the nodal accelerations.
In the paper Rayleigh damping is assumed (Bathe and Wilson?) i.e.

C =aM + K.

Under the hypothesis of continuous displacements and velocities, that is
as long as contact-impact does not take place at any boundary point, the
motion is fully described by the linear differential equations (1) and by the
“initial” conditions at time t = t4:

u=uy and u=1uy

The “initial” conditions are introduced at time ¢ = 0 and at any time step
t 4 for which discontinuity of the velocities occures due to contact-impact.

The unilateral contact-impact problem will be formulated as a quadratic
programming problem after an appropriate time discretization.

Here the implicit and unconditionally stable weighted residual time dis-
cretization algorithm proposed by Zienkiewicz, Wood and Taylor'® is used.
The algorithm interpolates independently the displacement and velocity
vectors and does not require computation of acceleration terms. This is
a significant advantage for the present analysis, because it is avoided the
calculation of “initial” accelerations every time ¢4 at which contact-impact
takes place.

On the basis of this algorithm the differential equations of motion (1)
are converted to a set of algebraic equations which for the discrete time
interval (¢ — At) + ¢ takes the form:

KU, =F, (2)




where

k = alK -I— (ZQM + (lgc (3)
Ft:a4Ft+a5Ft—At+Ma8+Ca9 (4)
’&4 = dgU¢ + ar;. (5)

Also
’l.l.t = [—(1 —a)’l:l/t__At+(ﬂt——ut_At)/9'At]/Ot (6)

In the previous expressions ay . . . ag are known positive integration constants
and a7 ...ag are known vectors.
According to the integration scheme used these constants are:
1 1
= S aa = — aq = At0
N

as :At(l —0), 0,6:0,

a1 = At, a,

a7 = (1 —0)ui_ns,
as = “(’dt—At + 'u/t—At/eAt)/aa
ag = —((a — H)At cUi_At — ’ll/t_At)/O[

For o and 6 the value 0.5 is used, for which the algorithm is unconditionally
stable.

After the above discretization in space and time, at any time interval
(t — At) =t the discretized problem can take the form of a “static” unilateral
contact problem of a fictitious structural system , with (effective) stiffness
matrix K a load vector F' and displacements . (rel. 3 +5). A problem of
small size with respect to the unknown relative unilateral displacements u}
(m << 6n) is formulated and solved (see also Mitsopoulou, Panagiotopoulos,
Zervas®).

The solution is obtained as the sum of the effective reactions #7, #;, :

R (7)
of a bilateral overconstrained system (', obtained from the system (2,

by assuming that the effective relative displacements on I's are zero. #; are
the reactions of the system Q' due to the unknown “strains” 4, and #  are
the reactions due to the external actions when @; = 0. Thus relation (7)
can be written as: X

D i, +#) =, (8)
As a consequence of the above definition the m x m influence stiffness matrix
D is determined through calculations at the system € only once (at ¢ = 0).
The influence coefficient D;; is defined as the reaction in the direction i

due to unit imposed displacement at the direction j. The m-vector #° is
the reactions of the system ' due to the external loads of the increment

((t — At) +1).

'In the following by #¢, u:, are the normal reactions and displacements of the nodes
at the boundary I'; at time ¢.




From rel. (5) we have that

Uy = (il,t-—<1 —9)'U1_At)/9 (9)
Due to the unilateral contact conditions

u; >0 or

w, 1—46
#“Tut—At >0 or

(w; —ug) > 0 where wug=(1—0)u_n;
For d; —uo=0 (thatisu;=0) # >0 (contact condition)
For @;—uo>0 7 =0 (separation)

The above relations are written in compact form:
uw—up>0 >0
(ke — o) - # = 0 (10)

Relations (10) together with equations (8) form a linear complementarity

problem with symmetric positive definite matrix D which is equivalent to
the following quadratic programming problem:

Y S
{mm gutTDut +#0T dy | Ay —wo > 0} 2

The problem is solved by the Hildreth d’Esopo algorithm and thus the final
condition of each nodal pair of points is obtained. At this time if a pair of
points ¢ come into contact the velocities change due to impact and proper
“initial” conditions must be imposed at pair ¢ (Mitsopoulou®, Hughes et al®).
For example if a point ¢ of an elastic body gets into contact with a rigid
obstacle the velocity of the point 7 after impact is equal to zero (¢} = 0) in
case of perfectly inelastic impact, and it is reversed (u} = —u; ) in case of
perfectly elastic impact. Using then the already calculated values of u; and
t; on the boundaries together with the load vector at time step t — At + ¢,
we obtain the displacements and stresses of the system, and we proceed to
the next time step.

NUMERICAL EXAMPLES

As a first example a simple uniaxial spring mass system, with mass m = 1.0
and stiffness k& = 1.0, is presented (fig. 1) in which the mass is initially
displaced by zo = 1.0. When perfectly elastic impact i1s considered the
mass oscillates between z¢ and z; = —0.5 where a rigid surface is present,
shown in figure 2. It oscillates freely between —z; and z; in the case of
perfectly inelastic impact (fig. 3).

?The index T means transpose




As a second example the structure shown in fig. 4 is considered. The
structure is founded on elastic soil (Winkler assumption) through continuous
foundation beams. Unilateral contact conditions hold at the base of the
footing.

The system is subjected to a dynamic loading in conjuction with the
static loads due to its dead weight. The strong motion of Thessaloniki’s
(1978) earthquake accelerogram is used for the dynamic excitation of the
structure. Perfectly plastic impact is considered. Some characteristic results
and comparisons between unilateral and bilateral behaviour are presented
in figures (6)=(8). It is seen that the displacements and the stresses of the
structure are greatly affected from the bilateral or unilateral assumption
conserning the responce of the foundation.
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Figure 1: Impact of a spring mass system against a rigid wall.
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Figure 2: Mass-spring system impact responce for perfectly elastic impact.
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Figure 3: Mass-spring system impact responce for perfectly plastic impact.
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Figure 4: The geometry and data of the examined structure.
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Figure 5: The ground accelerations
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Figure 6: Oscilations (vertical displacements) of the point 10 of the foun-

dation beam for bilateral and unilateral contact soil structure
conditions.
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Figure 7: Base moments of the shear wall for bilateral and unilateral con-
tact soil structure conditions.

50.0

bilateral contact

SE ilateral contact
£ 250 unila o c /\
E N u
£
s IR v v
g

-50.0 | : |

a0 8.0 9.0 10.06 11.0 12.0

Time (sec)

Figure 8: Base moments of column 6 for bilateral and unilateral contact
soil structure conditions.




