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INTRODUCTION

In the paper the dynamic response of framed structures with surface
foundation supported on soil which is capable of supporting only compressive
stresses (unilateral frictionless contact conditions) is studied. The structures are
supposed to be elastic with infinitesimal displacements and strains.

A method is presented for the numerical solution of this problem. Two or
three dimensional structures, discrete or discretized by the finite element method
are solved using also a temporal discretization. For each time step an elimination
of the internal degrees of freedom gives rise to a Linear Complementarity
Problem (L.CP) on the boundary for only a small number of unknowns, which are
the unknown unilateral displacements of the time step under consideration.

A parametric numerical analysis of 2D and 3D structures under seismic
excitations is made with unilateral and bilateral contact conditions. Some
characteristic results of this analysis are presented in the paper.

FORMULATION OF THE PROBLEM

We consider first the system of the bodies €, for which only the
kinematical constraints on I'y hold. The dynamic equations of equilibrium of this
system at any time are written as:

Ml'..'l.'+ CI..T+KE = PE:!') (1)

In (1) K is the 6nx6n stiffness matrix, M is the 6nx6n positive definite mass
matrix, C is the 6nx6n damping matrix, p(?) is the 6n vector of the nodal forces,
and @, & & the 6n vectors of the nodal displacements, velocities and accelerations.
As long as contact-impact does not take place at any boundary point, the
motion is fully described by the linear differential equations (1) and by the “initial”



conditions at time r=t,; w=u4 and w=u,. The "initial" conditions are introduced
at time r=0 and at any time step t4 for which discontinuity of the velocities
occurs due to contact-impact.

For the solution of the problem also an appropriate time discretization
algorithm is used. Here the simple one-step algorithm of implicit type proposed
by Zienkiewicz, Wood and Taylor (1980) is used. On the basis of this algorithm the
differential equations of motion (1) of the system €, are converted to a set of

algebraic equations which for the discrete time interval (#-Af+7¢ takes the form:

K -o=FR (2)

After the above discretization, the unilateral contact conditions at the
boundaries I's are introduced. At the m pairs of the discrete contact points,
fictitious semi-rigid unilateral bonds with infinitesimal size are introduced, which
can carry only compressive stresses. Each bond 7 has a direction normal to the
contact surface and connects the adjacent nodes & and /. Denoting by:

5;  the stress of the bond 7(normal contact reaction at the pair 1),

e; the imposed strain of the bond 7 corresponding to s; (relative displacements
of the node pair & and /), and

h;  the initial gap between the node pair

the following relations hold:

;20 ¢&=e+h=Glo+h=0 -5-&5=20 3)
where
G =(o..gi..8;..0]
is the fxn strain-displacement matrix of the bond 7 connecting nodes & and /
-Zi=8u=& =8, Dy ,0,0,0]
and a=[n, , n,,. n,) is the unit vector of the direction cosines which is normal to

the bodies A and B at the location of the bond i For the total number of the m
unilateral bonds, at the time step £ the following matrix relations can be written:

£=Gru+b20, "S:i’a, Sr‘5'=ﬂ (4}

using the vectors: 8, =[5, .. s, 1. e, =[e, .. e, 1, h,=[h, .. h,],and
=[] G5.::65]

The unilateral contact kinematic conditions &=G7u+k will be taken into
account together with the equations of dynamic equilibrium (2), throught the
technique of Langrange multipliers. Accordingly to this technique if (2) are the
dynamic equilibrium equations without any constrains, G'B6,+h=0 are the
kinematic constraints, and §, are the reactions corresponding to the kinematic
constraints, then (see e.g. Washizu 1975):

Ku, +Gs,=p,, G'u=6-h (5)

Since the matrix K is always non-singular, & can be eliminated from equations
(5), and since also relations (4) hold, the following relations are obtained:

& =G K'G)s, +(G"K"'p,+h)=Fs,+8p.

g2l =gz, =0 (6)




where F is the mxm influence matrix of the reactions of the bonds to their
corresponding fictitious strains, and &, is the m-vector of the fictitious
strains of the bonds due to the external loading. The matrix F is non-singular,
thus D= F- exists, and relations (6) can be written as:

s,=Dg + D8, = D8 +5,, &3z20, -83:0, 58=0 @

where D is the mxm influence matrix of fictitious strains of the bonds to
their corresponding reactions, and §,, is the m-vector of the reactions of the
bonds due to the external loading.

The relations (6) (resp. the relations 7), which constitute a Linear
Complementarity Problem (L.C.P.) give the solution of the problem.

Here for the numerical solution the relations (7) are used. The matrix D
and the vector s, are not calculated through matrix invertion, but by using their
physical meaning (Doudoumis and Mitsopoulou 1988) and the L.C.P. is solved by
the Lemke’s algorithm.

NUMERICAL EXAMPLES

As an example of unilateral behaviour of a structure under seismic loading,
the five-storey building of figure 1 was studied. The strucrure is founded on stiff
soil through continoous foundation beams. The structure is subjected to static
vertical loads in conjuction with dynamic seismic excitation for which the
accelerograms of Pacoima, Taft and El Centro earthquakes were used.

In figure 2 the bending moments at the base of the core during the Pacoima
earthquake are shown for unilateral and bilateral structural behaviour. In figure 3
the maximum values of the bending moments at the base of the core and the
columns 14 and 15 are shown, for the above mentioned earthquakes. The presented
here sample of results shows that the structures with unilateral contact support
conditions (if partial uplift occurs during an earthquake) take special dynamic
characteristics and the response values could drastically change from the response
values of the corresponding bilateral structures.

A systematic parametric analysis has been carried out (Zervas 1993), by which
it has become clear that generally there is a decrease of the response values at the
unilateral structure. But it should be noted that for some special cases a significant
increase of the response values of the unilateral structure may also occur.
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Figure I: Plan view and vertical section of a five-storey building
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Figure 3: a) Maximum moments (tm) at the base of the core
b) Maximum moments (tm) at the base of the columns 14 and 15




